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Abstract

We prove that for a simple simply connected quasi-split group of type 3,6D4, E6, E7

defined over a perfect field F of characteristic 6= 2, 3 the Rost invariant has trivial
kernel. In certain cases we give a formula for the Rost invariant. It follows immediately
from the result above that if cdF ≤ 2 (resp. vcdF ≤ 2) then Serre’s Conjecture II
(resp. the Hasse principle) holds for such a group. For a (C2)-field, in particular
C(x, y), we prove the stronger result that Serre’s Conjecture II holds for all (not
necessary quasi-split) exceptional groups of type 3,6D4, E6, E7.

1 Introduction

This paper grew out of the letters [Ch98, Ch00] where we sketched how Harder’s proof [H65,
H66] of the Hasse principle for exceptional groups 3,6D4, E6, E7 over number fields can be
carried over to the case of quasi-split groups defined over a perfect field of cohomological
dimension ≤ 2 and how the same ideas can be applied to describe in particular the kernel
of the Rost invariant for 2E6.

In this paper we give full proofs of all these results. The main ones are the following.
Let G0 be a quasi-split simple simply connected exceptional group of type 3,6D4, E6, E7
defined over a perfect field F of characteristic 6= 2, 3. Then

• the kernel of the Rost invariant of G0 is trivial;

• if cdF ≤ 2, then Serre’s Conjecture II holds for G0;

• if vcdF ≤ 2, then the Hasse principle Conjecture II holds for G0;

• if F is a (C2)-field, then Serre’s Conjecture II holds for an arbitrary simple simply
connected group (not necessary quasi-split) of the same type as G0.

∗The author gratefully acknowledge the support of TMR ERB FMRX CT-97-0107 and Forschungsin-

stitut für Mathematik, ETH in Zürich.
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In [G97] Gille proved that a group G of inner type E6 or E7 defined over F is F -split
iff there exist finite field extensions E1, . . . , Es of F splitting G and such that the

g.c.d.{ [E1 : F ], . . . , [Es : F ] } = 1.

As an easy corollary of our results we obtain that the same quasi-splitting criterion is true
for outer forms of type 3,6D4 or 2E6.

Another corollary says that for any F -group G (not necessary quasi-split) of type
3,6D4,

1,2E6 or E7 there exists a chain of cyclic extensions

L0 = F ⊂ L1 ⊂ · · · ⊂ Ln

of degrees 2 or 3 such that G splits over Ln.
Recall that for all classical groups and groups of type G2, F4 Serre’s Conjecture II

and the Hasse principle Conjecture II were proved by E. Bayer-Fluckiger and R. Pari-
mala [BP95, BP98]. J. Ferrar [Fer69] essentially proved the Hasse principle Conjecture II
for inner groups E6 with the Tits algebras of index ≤ 3. Note also that our results related
to Serre’s Conjecture II (items 2, 4) were obtained independently by P. Gille [G01] using
different methods.

S. Garibaldi [Gar01] also proved independently the triviality of the kernel of the Rost
invariant for quasi-split groups E6, E7. His argument is based on consideration of explicit
geometric realizations of quasi-split E6, E7 and studying properties of algebra structures
which occur in his constructions. Since items 2, 3 immediately follow from the first one,
Garibaldi’s result gives another proof of Serre’s Conjecture II and the Hasse principle
Conjecture II for quasi-split groups E6, E7.

Our approach is based on different ideas which, as we have already mentioned, come
back to G. Harder. In contrast to Garibaldi’s paper we focus on studying intrinsic prop-
erties of groups splitting over small extensions of the ground field F . The main body of
the paper are Sections 4, 5 where we study properties of groups splitting over an extension
K/F of degree p = 2, 3. In this part F is an arbitrary field of characteristic 6= 2, 3. We
show that the F -structure of such groups can be described completely by certain numeri-
cal invariants. In the case of quadratic extensions we follow the author proof [Cher89] of
the Platonov-Margulis conjecture on the projective simplicity of groups of rational points
splitting over a quadratic extension. The results obtained in these two sections allow us
to give a formula for the Rost invariant of strongly inner or outer forms of type E6, E7
splitting over an extension of degree p = 2, 3 in the case where the Galois group Gal(F s/F )
is a pro-p-group (see 5.12 and 6.2.3).

Gille’s splitting criterion [G97] for groups of inner type E6, E7 combined with the
results described in Sections 4,5 gives proofs of the main theorems more or less quickly.
This is done in Sections 6,7,8.

Finally we note that the same methods together with the results of [Ch94, Ch89] prove
Serre’s Conjecture II for E8 in each of the following cases:

• the nilpotent closure of the basic field F has cohomological dimension 1;

• Gille’s splitting criterion [G97] holds for E8.

Acknowledgements. I am grateful to J.-P. Serre and S. Garibaldi for useful comments
and discussions of the first version of the paper.
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Notation

The letter F denotes a perfect field and F s denotes a separable closure of F . If L/F
is a separable extension, then RL/F denotes the Weil functor of restriction of scalars.

We say that a reductive F -subgroup G′ ⊂ G is standard if there is a maximal F -torus
T of G normalizing G′.

If G is a reductive algebraic group and T ⊂ G is a maximal torus, we let Σ(G,T )
denote the root system of G with respect to T .

If S ⊂ G is a maximal F -split torus then the semisimple part of the centralizer CG(S)
is called the semisimple F -anisotropic kernel of G.

We number the simple roots of exceptional groups as in [Bourb68].

2 The Rost invariant and its properties

In the 90s, for a simple simply connected linear algebraic group G defined over a field
F , M. Rost [R] constructed a cohomological H3(Q/Z(2))–invariant of G which nowadays
is called the Rost invariant of the group G. Thus, for any field extension K/F the Rost
invariant associates a canonical map of pointed sets

RK
G : H1(K,G)→ H3(K,Q/Z(2)).

By abuse of language, instead of RK
G we will use the abbreviated notation RG for the Rost

invariant whenever there is no danger of confusion.
In this section we will state (without proofs) properties of the Rost invariant used

in Section 6. For the proofs we refer to [R], [KMRT98] (§31), [EKLV98], [G00], [M01]
(Appendix A and B). We note that an explicit formula for RG is known only in a few
cases. But fortunately that will do for us to prove triviality of the kernel of the Rost
invariant for quasi-split groups E6, E7.

2.1 Inner type An

Let A be a central simple algebra over F of exponent e and degree n+1. Let G = SL1(A).
Assume that the characteristic of F doesn’t divide n+1. Then H1(F,G) = F×/Nrd (A×)
and the formula for the Rost invariant RG is given (up to a sign) by

RG : F×/Nrd (A×) −→ H3(F, µ⊗2e ), RG (xNrd (A×)) = (x) ∪ [A].

Theorem 2.1 ([MS82], Theorem 12.2) If n+ 1 is square-free, then RG is injective.

2.2 Spinor groups

Let f be a quadratic form over a field F of characteristic 6= 2 of dimension at least 5 and
let G = Spin(f). The set H1(F,G) fits into the exact sequence

H1(F, Spin(f))
π−→ H1(F, SO(f)) −→ 2BrF.

It follows that Imπ consists of classes of quadratic forms having the same dimension,
discriminant and Hasse-Witt invariant as f . Therefore, for any cocycle ξ ∈ Z1(F, Spin(f))
we obtain that π([ξ])− [f ] ∈ I3F and the formula for the Rost invariant is given by

RSpin(f) : H
1(F, Spin(f)) −→ H3(F, µ⊗22 ), RSpin(f)([ξ]) = e3(π([ξ])− [f ]). (1)

Here e3 is the Arason invariant [Ar75].
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Proposition 2.2 Let f be a quadratic form of dimension ≤ 12 over a field F such that
G = Spin(f) is quasi-split over F , i.e. f is of maximal Witt index. Then RG has trivial
kernel.

Proof. The statement follows from (1) and the Arason-Pfister Hauptsatz [L73], X.3.1.

2.3 Outer forms An

Let K/F be a quadratic extension, V a vector space of dimension n + 1 over K and
h a hermitian form on V . The group SU(V, h) of isometries with determinant 1 is an
almost simple simply connected group of type An defined over F and splitting over K.
The hermitian form h corresponds to the quadratic form q on the vector space V viewed
as an F -vector space: q is given by the formula q(v) = h(v, v). It easily follows that we
have a natural embedding SU(V, h) ↪→ SO(V, q) which can be lifted to an embedding
SU(V, h) ↪→ Spin(V, q), since SU(V, h) is simply connected. It turns out that the Rost
invariant for SU(V, h) is just the restriction of RSpin.

Proposition 2.3 Let h be a quasi-split hermitian form of dimension ≤ 6. Then the Rost
invariant RSU(V,h) has trivial kernel.

Proof. Apply the same argument as in Proposition 2.2.

2.4 The Rost numbers

Let G,H be almost simple simply connected linear algebraic groups over F and let ρ :
H ↪→ G be an F -embedding. The restriction RG at ρ(H) gives a cohomological invariant
of H, hence is equal to nρRH for a positive integer nρ (see [KMRT98], §31). The smallest
such integer is called the Rost number of embedding ρ.

Proposition 2.4 Let ρ : H ↪→ G be an F -embedding such that ρ(H) is a standard sub-
group. Assume that all roots of the root system Σ = Σ(G,T ) of G with respect to a maximal
torus T have the same length. Then nρ = 1; in particular, for any [ξ] ∈ H1(F,H) one has
RG(ρ([ξ])) = RH([ξ]).

Proof. Let T be a maximal F -torus of G normalizing ρ(H). Then ρ(H) · T is a reductive
subgroup of G. Since T is a maximal torus of ρ(H) ·T and all maximal tori are conjugate,
we easily obtain that the connected component S of the intersection T ∩ρ(H) is a maximal
torus of ρ(H). Since T normalizes ρ(H), there is a natural embedding

Σ(ρ(H), S) ↪→ Σ(G,T ).

Hence the coroots of ρ(H) are also the coroots of G (we used the fact that all roots of the
root system Σ = Σ(G,T ) have the same length). The rest of the proof follows from [M01],
Appendix B.

3 Steinberg’s theorem

We state now two theorems which are due to Steinberg [St65]. Although they are not for-
mulated explicitly in [St65], their proofs can be easily obtained from arguments contained
in [St65], §10 (see also [PR94], Propositions 6.18, 6.19, p. 338–339).
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Let G0 be a simple (not necessary simply connected) linear algebraic group split or
quasi-split over F . Let ξ ∈ Z1(F,G0) be a cocycle and let G = ξG0 be the corresponding
twisted group.

Theorem 3.1 For any maximal torus S ⊂ G over F there is an F -embedding S ↪→ G0
such that the class [ξ] lies in the image of H1(F, S)→ H1(F,G0).

Theorem 3.2 In the notation above assume that G0 is a simple simply connected group
split over F and that G is isotropic over F . Then ξ is equivalent to a cocycle with coeffi-
cients in a proper semisimple simply connected F -split subgroup of G0 which is standard
and isomorphic over F s to a semisimple anisotropic kernel of G.

Proof. Let S1 ⊂ G be a maximal F -split torus. Then the semisimple part of its centralizer
CG(S1) is a semisimple simply connected F -anisotropic subgroup of G (see [T66]). Let
S ⊂ G be a maximal torus over F containing S1. By Theorem 3.1, there is an F -embedding
φ : S ↪→ G0 such that

[ξ] ∈ Im [H1(F, S)→ H1(F,G0)].

The centralizer CG0
(φ(S1)) ⊂ G0 is a reductive subgroup of G0 and it follows from the

construction of φ (see the proof of Proposition 6.18 in [PR94], p. 339) that the groups
CG0

(φ(S1)) and CG(S1) are isomorphic over F s. In particular,

H = [CG0
(φ(S1)), CG0

(φ(S1))]

is a simply connected semisimple algebraic group over F .
The group H is clearly standard. It is split over F , since any F -split subtorus in G0,

and in particular φ(S1), lies in a maximal F -split torus. Furthermore, from the exact
sequence

H1(F,H) −→ H1(F,CG0
(φ(S1))) −→ H1(F,CG0

(φ(S1))/H) = 1

we see that ξ is equivalent to a cocycle with coefficients in H.

4 Groups splitting over a quadratic extension

Throughout this section F denotes a field of characteristic 6= 2, K = F (
√
d) its quadratic

extension and τ the non-trivial automorphism of K/F .
Let G be a simple simply connected algebraic group of rank n defined over F and

splitting over K. By Lemma 6.17 in [PR94], p. 329, there is a Borel subgroup over K
such that B∩τ(B) = T is a maximal torus. We remark that this lemma in [PR94] is proved
under the condition that char(F ) = 0. However the same proof with trivial modifications
works in the case of positive characteristic.

The torus T is F -defined and splitting over K, since any K-torus in B splits over K.
For our purposes it suffices to treat only the case where T is an F -anisotropic torus.

4.1 The structure of G(K)

Let g be the Lie algebra of G and let Σ = Σ(T,G) be the root system of G relative to
T . The Borel subgroup B determines an ordering of Σ, hence the system of simple roots
Π = {α1, . . . , αn}. Let Σ+ (resp. Σ−) be the set of positive (resp. negative) roots and let
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B− be the Borel subgroup opposite to B with respect to T . We pick a Chevalley basis
[St67]

{Hα1
, . . .Hαn , Xα, α ∈ Σ}

in g corresponding to the pair (T,B). This basis is unique up to signs and automorphisms
of g which preserve B and T (see [St67], §1, Remark 1).

Since G is a Chevalley (in other words, quasi-split) group over K, its K-structure is
well known. For details and proofs of all standard facts about G(K) used in this section we
refer to [St67]. In particular, we refer to [St67] for the definition of the operators Xn

α /n!
in the case char(F ) = p > 0 (see also [SGA3]). Recall only that G(K) is generated by the
so-called root subgroups Uα = 〈xα(u) | u ∈ K〉, where α ∈ Σ and

xα(u) =
∞∑

n=0

unXn
α /n! ,

and T is generated by the one-parameter subgroups

Tα = T ∩Gα = 〈hα(t) | t ∈ K∗ 〉.

Here Gα is the subgroup generated by U±α and

hα(t) = wα(t)wα(1)
−1, wα(t) = xα(t)x−α(−t−1)xα(t).

Furthermore, since G is a simply connected group, the following relations hold in G (cf.
[St67], Lemma 28 b), Lemma 20 c) ):

(A) T = Tα1
× · · · × Tαn ;

(B) for any two roots α, β ∈ Σ we have

hα(t)xβ(u)hα(t)
−1 = xβ(t

〈β,α〉u)

where 〈β, α〉 = 2 (β, α)/(α, α).

If ∆ ⊂ Σ+ is a subset, we let G∆ denote the subgroup generated by U±α, α ∈ ∆.

4.2 Galois descent data

We shall now describe explicitly the F -structure of G, i.e. the action of τ on the generators
{xα(u), α ∈ Σ}.

Lemma 4.1 τ(α) = −α for any α ∈ Σ.

Proof. The character α+ τ(α) of T is F -defined, hence it is zero, since by our assumption
T is F -anisotropic.

Lemma 4.2 τ(B) = B−.

Proof. The statement follows immediately from Lemma 4.1.

Lemma 4.3 Tα ' R
(1)
K/F (Gm,K).
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Proof. Tα is a one-dimensional F -torus splitting over K. According to Lemma 4.1, τ acts
on its character lattice by multiplication by −1. So the result follows.

Let α ∈ Σ. Since, by Lemma 4.1, τ(α) = −α, there exists a constant cα ∈ K× such
that τ(Xα) = cαX−α. It follows that the action of τ on G(K) is determined completely
by the family {cα, α ∈ Σ}. We call these constants structure constants of G with respect
to T . We summarize their properties in the following two lemmas.

Lemma 4.4 Let α ∈ Σ. Then we have

(i) c−α = c−1α ;

(ii) cα ∈ F×;
(iii) if β ∈ Σ is a root such that α+ β ∈ Σ, then cα+β = ±cα cβ; in particular, the family
{cα, α ∈ Σ} is determined completely by its subfamily {cα1

, . . . , cαn}.

Proof. (i) Apply τ to the equality [Xα, X−α] = Hα and use the fact that τ(Hα) = −Hα.

(ii) One has Xα = τ2(Xα) = τ(cα)c−αXα, hence τ(cα)c−α = 1. Substituting c−α = c−1α

we obtain τ(cα) = cα, as required.

(iii) Apply τ to the equality [Xα, Xβ] = ±(r+ 1)Xα+β . Here r is an integer depending on
α, β only.

Remark 4.5 The number r above is the biggest integer such that

β, β − α, . . . , β − rα

are roots, but β − (r + 1)α is not a root. Therefore, this number is equal to 0 or 1, since,
by our assumption, α + β is a root. It follows, in particular, that r + 1 6= 0, since we
assumed that char(F ) 6= 2.

Lemma 4.6 τ [xα(u) ] = x−α(cατ(u)) for any u ∈ K and α ∈ Σ.

Proof. This follows from the equality xα(u) = exp (uXα).

4.3 Comparison of different Galois descent data

The family {cα, α ∈ Σ} determining the action of τ on G(K) depends on the chosen
Borel subgroup B and the corresponding Chevalley basis. Given another Borel subgroup
and Chevalley basis we get another family of constants and we want now to describe the
relation between the old ones and the new ones.

Let B′ ⊂ G be a Borel subgroup over K such that the intersection T ′ = B′ ∩ τ(B′) is
a maximal and F -anisotropic torus. Both tori T and T ′ are isomorphic over F since, by
Property (A) in 4.1 and Lemma 4.3, they are the direct products of n copies of the torus

R
(1)
K/F (Gm,K). Furthermore, there exists an F -isomorphism T → T ′ preserving positive

roots, i.e. which takes (Σ′)+ = Σ(G,T ′)+ into Σ+ = Σ(G,T )+. Any such isomorphism
can be extended to an inner automorphism

ig : G −→ G, x→ g x g−1

for some g ∈ G(F s), which takes B into B′ ( see [Hum75], Theorem 32.1 ).

Lemma 4.7 g can be chosen in G(K).
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Proof. Since the restriction ig |T is an F -defined isomorphism we easily get that tσ =
g−1+σ ∈ T (F s) for any σ ∈ Gal (F s/F ). Consider the cocycle ξ = (tσ) ∈ Z1(F, T ). Since
T splits over K, resK(ξ) viewed as a cocycle in T is trivial, by Hilbert’s Theorem 90. It
follows that there is z ∈ T (F s) such that tσ = z1−σ, σ ∈ Gal (F s/K). Then the element
g′ = gz is stable under Gal (F s/K) and clearly g′B(g′)−1 = B′.

Let g be an element from Lemma 4.7 and let t = g−1+τ . Since t belongs to T (K), it
can be written (cf. 4.1) as a product t = hα1

(t1) · · ·hαn(tn), where t1, . . . , tn ∈ K× are
some parameters. Using the equality t τ(t) = 1 and the fact that τ acts on characters of
T as multiplication by −1 one can easily see that t1, . . . , tn ∈ F×. Consider the set

{H ′α1
= gHα1

g−1, . . . , H ′αn
= gHαng

−1, X ′α = gXαg
−1, α ∈ Σ}

which is a Chevalley basis related to the pair (T ′, B′). Let {c′α, α ∈ Σ} be the correspond-
ing structure constants.

Lemma 4.8 For each α ∈ Σ one has c′α = t
−〈α,α1〉
1 · · · t−〈α,αn〉

n · cα.

Proof. Apply τ to the equality X ′α = gXαg
−1 and use relation (B) in 4.1.

The converse is also true.

Lemma 4.9 Let g ∈ G(K) be an element such that t = g−1+τ ∈ T (K). Then T ′ =
gTg−1 is an F -defined maximal torus splitting over K and the restriction of the inner
automorphism ig to T is an F -defined isomorphism. The structure constants {c′α} related
to T ′ are given by the formulas in Lemma 4.8.

Proof. This is clear.

Remark 4.10 The elements g ∈ G(K) such that g−1+τ ∈ T (K) correspond to the el-
ements of the kernel of µ : H1(K/F, T (K)) → H1(K/F,G(K)). The exact sequence in
Galois cohomology attached to the exact sequence

1 −→ T (K) −→ G(K) −→ (G/T )(K) −→ 1

shows that they come from F -points of the homogeneous variety G/T . It was shown in
[Cher89] that G/T is an F -rational variety, hence all such elements can be parametrized
by points from an open subset of an affine space.

Remark 4.11 The restriction of ig to T induces a bijection between H1(K/F, T (K)) and
H1(K/F, T ′(K)). If we identify these two sets (recall that T and T ′ are isomorphic over F ),
then this bijection is the translation by the class of the cocycle ξ = (tτ ) ∈ Z1(K/F, T (K)),
where tτ = g−1+τ .

4.4 Type An

It follows from Lemma 4.6 that, for each root α ∈ Σ, the subgroup Gα of G is defined over
F . Since it is a simple simply connected group of rank 1, we obtain that Gα ' SL(1, Dα),
where Dα is a quaternion algebra over F .

Lemma 4.12 Dα ' (d, cα).
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Proof. Since Tα = R
(1)
K/F (Gm,K) ⊂ SL(1, Dα), the algebra Dα splits over K. Hence it is

of the form Dα = (d, f), where f ∈ F×, and we need to prove that

cα ≡ f (mod NK/F (K
×)).

Let i, j ∈ D× be elements such that i2 = d, j2 = f, ij = −ji. We may identify Tα with

R
(1)
K/F (F (i)

×). A straightforward computation shows that the triple

H ′α =
1√
d
i, X ′α =

−
√
d+ i

−2f
√
d
j, X ′−α =

√
d+ i

2
√
d

j

belonging to D⊗FK is a Chevalley basis with respect to Tα. Note that under the standard
identification D ⊗F K 'M2(K) the triple H ′

α, X
′
α, X

′
−α corresponds to the matrices

(
1 0
0 −1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
.

From the above formulas for Xα and X ′α we easily get τ(X ′α) = fX ′−α.
Let us now come back to our former Chevalley basis Hα, Xα, X−α. Recall that a

Chevalley basis is unique up to an automorphism of the corresponding Lie algebra sl2(K).
It follows that there is an inner automorphism id of DK which takes H ′α, X

′
α, X

′
−α into

Hα, Xα, X−α. Since Hα and H ′α are proportional (being elements of the Lie algebra of
Tα), d lies in the Weyl group of Tα. Then Xα is proportional to either X ′

α or X ′−α.
Without loss of generality we may assume that Xα is proportional to X ′α. Then we have
Xα = zX ′α, X−α = z−1X ′−α for some z ∈ K× and hence

cαX−α = τ(Xα) = τ(z)τ(X ′α) = τ(z)fX ′−α = zτ(z)fX−α,

implying cα = zτ(z)f , as required.

In conclusion of this subsection we consider outer forms of type 2An−1 splitting over a
quadratic extension. Let

h = a1x1x
τ
1 − a2x2xτ2 + . . .+ (−1)n−1anxnxτn

be a hermitian form of dimension n relative to the quadratic extension K/F , where
a1, . . . , an are elements in F×. Let T ⊂ SU(h) be a maximal F -torus consisting of all
diagonal matrices in SU(h). Clearly, T is F -anisotropic and splits over K. As above,
we denote the corresponding structure constants related to T and the standard Chevalley
basis of SU(h)K ' SLn,K by {cα, α ∈ Σ = Σ(SU(h), T )}.

Lemma 4.13 One has the following:

cα1
≡ a1/a2, cα2

≡ a2/a3, . . . , cαn−1
≡ an−1/an (mod NK/F (K

×)).

Proof. The subgroup Gαi
⊂ SU(h) coincides with SU(hi) ⊂ SU(h), where

hi = aixix
τ
i − ai+1xi+1xτi+1.

Since SU (hi) ' SL (1, Dαi
) and Dαi

= (d, aαi
/aαi+1

), the result follows from Lemma 4.12.
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4.5 A cohomological property

Proposition 4.14 The natural map H1(K/F, T (K))→ H1(K/F,G(K)) is surjective.

Proof. We are under the conditions of Lemma 6.28 in [PR94], p. 369, so the result follows
from that lemma.

5 Groups E6, E7 splitting over cubic extensions.

Throughout this section F denotes a field of characteristic 6= 3, K/F a cyclic extension of
degree 3 and τ a non-trivial automorphism of K/F . We also assume that Γ = Gal(F s/F )
is a pro-3-group. We let G0 denote a simple simply connected split group over F of type
E6, E7.

Theorem 5.1 Any cocycle ξ ∈ Z1(K/F,G0) is equivalent to a cocycle with coefficients in
a standard simple simply connected F -subgroup H < G0 of inner type A2.

Proof. We split our proof into a sequence of simple observations. The main ingredi-
ents are the classification of Tits indices [T66], Steinberg theorem [St65] and the fact
that Γ is a pro-3-group; in particular there are no simple F -anisotropic groups of types
A1, A3, Bn, Cn,

1,2Dn, G2. We let G = ξG0 denote the corresponding twisted group. Con-
sider first the key case where G is an F -anisotropic group of type E6.

5.1 Type E6: anisotropic case

5.1.1 Construction of a special torus

Proposition 5.2 G contains a maximal F -defined torus S splitting over K.

Proof. We follow Harder’s arguments [H65, H66] (cf. [PR94], Chapter 6). In this part
G is not necessary a strongly inner form. Let us start with the construction of a simple
simply connected F -subgroup of G of type 3D4 splitting over K. Since G splits over K,
we choose a K-split maximal torus T . Let Σ = Σ(G,T ) and let Π = {α1, . . . , α6} ⊂ Σ be
a basis. Let P ⊂ G be the standard parabolic subgroup over K corresponding to α6.

Consider the connected component C of the intersection P∩ τ(P)∩ τ 2(P). It is defined
over F , hence reductive, since G is F -anisotropic. Denote the central torus of C by S1 and
let C(1) = [C,C] = C1 · ... · Cs be the decomposition of the semisimple part of C into an
almost direct product of the simple components over F s. It easily follows from dimC ≥ 30
that C(1) contains a simple component, say C1, of type not An (see Lemma 6.32 in [PR94],
p. 380).

Lemma 5.3 C1 is defined over F .

Proof. If C1 is defined over L/F , then there is a canonical embedding H1 = RL/F (C1) ↪→
C, since C is F -defined. Consider a Levi subgroup L ⊂ P over K containing C. The
parabolic subgroup P corresponds to α6, so the semisimple part [L,L] of L has type D5.
It follows then from the inclusion [C,C] ⊂ [L,L] that

rankH1 = [L : F ] · rankC1 ≤ 5.

But [L : F ] is a power of 3 and C1 is not of type An, hence [L : F ] = 1.

10



Lemma 5.4 C1 has type
3D4.

Proof. The conditions C1 is F -anisotropic and rankC1 ≤ 5 imply that C1 is of type either
F4 or D4. A group of type F4 being a group of dimension 52 can not be embedded into
the group [L,L] of type D5, since dim [L,L] = 45. So the result follows.

Lemma 5.5 C(1) = C1.

Proof. If C(1) contains another simple component C2, then its rank is 1, since C(1) has
rank at most 5. It follows that C2 is defined over F and hence F -isotropic being a group
of type A1 — a contradiction.

Lemma 5.6 S1 ' R
(1)
K/F (Gm,K).

Proof. We have dimC ≥ 30. On the other hand, C(1) = [C,C] is a group of dimension 28
and rank 4. Hence dimS1 = 2. According to the classification of 2-dimensional tori [V98]
it suffices now to show that S1 is K-split or, what is the same, K-isotropic, since Γ is a
pro-3-group.

Let L be a Levi subgroup of P overK containing C. Both groups L and C are reductive
and have the same rank 6. It follows that the central torus A of L is contained in C. Since
it commutes with [L,L] which contains [C,C] = C1, we conclude that A ⊂ S1. It remains
to note that A is K-split.

Lemma 5.7 C1 contains a maximal torus S2 isomorphic to R
(1)
K/F (Gm,K)×R(1)K/F (Gm,K).

Proof. Consider the following chain of inclusions:

C = S1 · C1 ⊂ CG(S1) ⊂ CG(A) = L.

It gives
[C,C] ⊂ [CG(S1), CG(S1)] ⊂ [L,L].

Since [C,C] and [L,L] have type D4 and D5 respectively and [CG(S1), CG(S1)] is a group
of rank 4, we conclude that [CG(S1), CG(S1)] = [C,C] = C1.

Since S1 splits over K, so are CG(S1) and [CG(S1), CG(S1)] = C1. Thus C1 is an
F -group of type D4 splitting over K. Then arguing just as in [PR94], p. 371–372, we
obtain that C1 contains a torus of the required form.

Lemmas 5.6 and 5.7 show that S = S1 · S2 is an F -defined maximal torus of G splitting
over K. Proposition 5.2 is proved.

Let S be the torus constructed in Proposition 5.2. According to Theorem 3.1 there
exists an F -embedding S ↪→ G0 such that

[ξ] ∈ Im [H1(F, S) −→ H1(F,G0)].

We fix this embedding and starting from this point we may forget about the way it was
constructed. The only fact we need to know is that S is an almost direct product of

three copies of R
(1)
K/F (Gm,K). Based on this fact we are going to show that there exists a

decomposition

S ' R
(1)
K/F (Gm,K)×R(1)K/F (Gm,K)×R(1)K/F (Gm,K) (2)

11



and a new F -embedding η : S ↪→ G0 with the following properties:

(a) the images of the first two components in decomposition (2) lie in an F -split standard
subgroup of G0 isomorphic to SL3 × SL3,
(b) ξ is equivalent to a cocycle with coefficients in η(S).

5.1.2 The Weyl group WE6

Let Σ = Σ(G0, S) be the root system of G0 with respect to S, W =W (Σ) the Weyl group
of Σ and Π = {α1, . . . , α6} a fixed basis of Σ.

Lemma 5.8 Let W3 ⊂W be a 3-Sylow subgroup. Then

W3 ' (Z/3× Z/3× Z/3) o Z/3,

where Z/3 acts by permuting the components of Z/3× Z/3× Z/3.

Proof. We have # (W3) = 34. Let Σ1,Σ2 and Σ3 be the three subroot systems of Σ of type
A2 generated by roots 〈α1, α3〉, 〈α5, α6〉 and 〈α2,−β〉 respectively, where β ∈ Σ is the
positive root of maximal length with respect to the basis Π. Let w0, w1 ∈ W be the ele-
ments of maximal length with respect to the basis {α1, . . . , α6} and {α1, α3, α4, α2,−β, α5}
respectively.

It is easy to see that w = w0 ·w1 has order 3 and takes the roots α1, α3, α5, α6, α2,−β
into α6, α5, α2,−β, α3, α1 respectively. Therefore w permutes the components of the sub-
system Σ′ = Σ1 × Σ2 × Σ3 ⊂ Σ and their Weyl groups. Let v1 ∈ W (Σ1) be an arbitrary
element of order 3. Then v2 = wv1w

−1 ∈ W (Σ2) and v3 = wv2w
−1 ∈ W (Σ3). It fol-

lows that v1, v2, v3 commutes and w permutes them; in particular, v1, v2, v3, w generate a
subgroup W3 ⊂W of order 34.

Since S is an F -defined maximal torus splitting over K, the group Gal (K/F ) acts on
the root system Σ. Thus we have a natural embedding Gal (K/F ) ↪→ W . Choosing an
appropriate basis of Σ we may assume that the image of Gal (K/F ) lies in the 3-Sylow
subgroup W3 constructed in Lemma 5.8.

Lemma 5.9 The image of Gal (K/F ) lies in a subgroup 〈v1, v2, v3〉 of W3.

Proof. Let τ = vi11 v
i2
2 v

i4
3 w

i4 , where i1, . . . , i4 are integers. Since S is F -anisotropic, we
have α1 + τ(α1) + τ2(α1) = 0. On the other hand, assuming that i4 6= 0 we easily obtain
that τ(α1) ∈ Σ2 and τ

2(α1) ∈ Σ3. But then α1+ τ(α1)+ τ
2(α1) 6= 0 — a contradiction.

5.1.3 Special embedding S ↪→ G0

Lemma 5.9 shows that Σ1,Σ2,Σ3 are stable under the action of Gal (K/F ), hence the
subgroup GΣ1

·GΣ2
·GΣ3

⊂ G0 is F -defined and of type A2×A2×A2. Note also that the

three intersections S∩GΣi
are 2-dimensional tori isomorphic to R

(1)
K/F (Gm,K). This follows

from the facts that they are F -anisotropic, splitting over K and from the classification of
2-dimensional tori. Clearly, the tori S ∩GΣi

, i = 1, 2, 3, generate S.
We are now ready to construct a new embedding S ↪→ G0 with the required prop-

erties (a) and (b). Let T ⊂ G0 be a maximal F -split torus and let {β1, . . . , β6} be a
basis of the root system Σ(G0, T ). We consider the subsystems Σ′1,Σ

′
2,Σ

′
3 generated by
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{β1, β3}, {β5, β6}, {β2,−β′} respectively. Here β′ is the root of maximal length with re-
spect to the basis {β1, . . . , β6}. Since GΣ′

1
, GΣ′

2
and GΣ′

3
are isomorphic to SL3 over F ,

there are F -embeddings φi : R
(1)
K/F (Gm,K) ↪→ GΣ′i , i = 1, 2, 3. Then the torus

S′ = Imφ1 · Imφ2 · Imφ3

is maximal in G0 isomorphic to S over F .

Proposition 5.10 [ξ] ∈ Im [H1(F, S′) −→ H1(F,G0)].

Proof. It follows from the constructions of S and S ′ that there is an F -defined isomorphism
S → S′ which takes Σ(G0, S) into Σ(G0, S

′). Any such isomorphism can be extended to
an inner automorphism ig : G0 → G0 over F s, by Theorem 32.1 in [Hum75]. Since the
restriction ig|S is F -defined, we obtain that σ(g)−1 · g ∈ S for any σ ∈ Gal (F s/F ). Let
ξ = (aσ), where aσ ∈ S. Then the equivalent cocycle

ξ′ = (g · aσ · σ(g)−1) = (g · aσ · (σ(g)−1g) · g−1)

takes values in S ′ and we are done.

5.1.4 The direct product decomposition

In view of Proposition 5.10 the torus S ′ satisfies condition (b). Let us prove that it
satisfies condition (a) as well. We do not need the torus S any more and to ease notation
we will denote S ′ by S. We also denote Σ(G0, S

′) by Σ and let Π = {α1, . . . , α6} be the
corresponding basis of Σ.

For any root α ∈ Σ we have α+ τ(α) + τ 2(α) = 0, since S is F -anisotropic. It follows
that the set {±α,±τ(α)} generates an F -defined subsystem of Σ of rank at most 2. This
subsystem has the automorphism τ , which is of order 3, hence it has type A2. In particular,
the subgroup G{α,τ(α)} is an F -defined inner form of type A2 splitting over K. For α ∈ Σ
we let

S{α,τ(α)} = S ∩G{α,τ(α)}.

Since S{α,τ(α)} splits over K, we obtain that S{α,τ(α)} ' R
(1)
K/F (Gm,K).

Recall also that, by construction, the three subsystems of Σ generated by the roots
{α1, α3}, {α5, α6} and {α2,−β} are stable under the action of Gal (K/F ) and have type
A2. Hence

S{α1,τ(α1)} = S{α1,α3}, S{α5,τ(α5)} = S{α5,α6}.

Proposition 5.11 The product morphism S{α1,α3} × S{α5,α6} × S{α4,τ(α4)} −→ S is an
F -isomorphism.

Proof. It suffices to show that it is an isomorphism over F s. We use notation from
Steinberg’s book [St67]. Recall that given a root α ∈ Σ, one can associate to it the one-

parameter subgroup Sα = 〈hα(t) | t ∈ F× 〉 ≤ S. By 4.1 (A), S is the direct product of
such subgroups corresponding to α1, . . . , α6. If α = m1α1 + · · ·+m6α6, then

hα(t) = hα1
(t)m1 · · ·hα6

(t)m6 , (3)

since all roots have the same length.
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It is clear that τ(α4) 6= ±β, since otherwise in view of the fact that the root subsystem
Σ3 = 〈α2,−β 〉 is F -defined we would have α4 ∈ Σ3. Therefore τ(α4) is of the form

τ(α4) = ±(m1α1 +m3α3 + · · ·+m6α6 + α2),

where m1,m3, . . . ,m6 are positive integers. Then it follows from (3) that

S = Sα1
× Sα3

× · · · × Sα6
× Sτ(α4) = S{α1,α3} × S{α5,α6} × S{α4,τ(α4)},

as required.

5.1.5 Concluding argument

Proof of Theorem 5.1 in anisotropic case. By Proposition 5.10 we may assume that
ξ ∈ Z1(F, S). Let ξ = (aσ), where aσ ∈ S. Applying Proposition 5.11 we split ξ into the
product of three cocycles ξ = ξ1 ·ξ2 ·ξ3 with coefficients in S{α1,α3}, S{α5,α6} and S{α4,τ(α4)}

respectively. Since GΣ1
and GΣ2

are isomorphic to SL3, ξ1 and ξ2 are trivial cocycles.
Let g1 ∈ GΣ1

and g2 ∈ GΣ2
be such that ξ1 = (g−1+σ

1 ) and ξ2 = (g−1+σ
2 ). Clearly, g1

and g2 commutes. It follows that the equivalent cocycle

ξ′ = ((g1g2) aσ (g1g2)
−σ) = (g1g2)

σ [(g−σ
2 g2)(g

−σ
1 g1)aσ] (g1g2)

−σ

has coefficients in

(g1g2)
σ S{α4,τ(α4)} (g1g2)

−σ ≤ (g1g2)
σ G{α4,τ(α4)} (g1g2)

−σ.

The condition (g1g2)
−1 (g1g2)

σ ∈ S easily implies that

H = (g1g2)
σ G{α4,τ(α4)} (g1g2)

−σ (4)

is an F -defined subgroup of type A2 splitting over K, hence we are done.

Remark 5.12 Let S ↪→ G0 be the embedding constructed in 5.1.3. Proposition 5.10 says
that the canonical map H1(K/F, S) → H1(K/F,G0) is surjective. By Proposition 5.11,
any cocycle ξ ∈ Z1(K/F,G0) can be written as a triple

ξ = (a1NK/F (K
×), a2NK/F (K

×), a3NK/F (K
×)),

where a1, a2, a3 ∈ F×. One can show that the above subgroup (4) is isomorphic to
SL(1, T ), where T is a cubic central simple algebra of the form T = (K/F, an1

1 a
n2

2 cα4
) for

certain integers n1, n2 and a constant cα4
∈ F×. These integers and the constant can be

computed explicitly, but we omit details. As a result, we obtain the following formula for
the Rost invariant:

RG0
([ξ]) = T ∪ (a3).

5.1.6 Moving Lemma

The above argument will be used below several times. Let us formulate it for the future
reference as follows.

Moving Lemma Let G be a simple group over F and let T be a maximal torus of G over
F . Let ξ ∈ Z1(F, T ) be a cocycle. Assume that ξ = ξ1 · ξ2 is the product of two cocycles
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with coefficients in T such that ξ1 takes values in T ∩H, where H is a proper F -subgroup
of G normalizing by T , and ξ2 viewed as a cocycle with coefficients in G is trivial. Then
ξ is equivalent to a cocycle with coefficients in a proper F -subgroup of G of the same type
as H.
Proof. Let ξ1 = (aσ), ξ2 = (bσ), where σ ∈ Gal (F s/F ), aσ ∈ T (F s) ∩ H(F s) and bσ ∈
T (F s). Since ξ2 is trivial, there is g ∈ G(F s) such that bσ = g−1+σ for all σ ∈ Gal (F s/F ).
Then the equivalent cocycle ξ′ = (cσ), where

cσ = g(aσbσ)g
−σ = gaσg

−1,

takes values in a proper F -subgroup gHg−1 which has the same type as H.

5.2 Type E6: isotropic case

This case is much easier.

Lemma 5.13 Let the twisted group G = ξG0 be F -isotropic. Then it splits over F ; in
particular ξ is trivial.

Proof. Assume the contrary. According to [T66] all admissible Tits’ indices of type 1E6
corresponding to isotropic groups are as follows:

(i) r r r r r
r

i i
α1 α3 α4 α5 α6

α2

(ii) r r r r r
r
i
i

α1 α3 α4 α5 α6

α2

(5)

In case (i) the semisimple anisotropic kernel of G is a classical group of type D4. Since
Γ is a pro-3-group, any such a group is F -split.

Consider case (ii). Applying Theorem 3.2 we obtain that ξ is equivalent to a cocycle
with coefficients in SL3 × SL3. Hence ξ is trivial and G is F -split.

5.3 Type E7

Proposition 5.14 There exists no F -anisotropic groups of type E7 splitting over K.

Proof. Assume the contrary. Let G be an F -anisotropic simple group of type E7 splitting
over K. To get a contradiction we can proceed as in case E6. Namely, let P ⊂ G be the
parabolic subgroup over K corresponding to the root α7. Then we consider the connected
component C of the intersection P ∩ τ(P) ∩ τ 2(P). As in case E6, it is easy to conclude
that C is a reductive group of dimension at least 52 whose semisimple part [C,C] contains
an F -defined simple component C1 of type not An.

Let L ⊂ P be a Levi subgroup containing C1. Its semisimple part has type E6, hence
C1 is a group of type either 3D4, F4, or E6. By a dimension argument, C1 cannot be of
type 3D4. If C1 is of type E6, then C1 is the semisimple part of L. It follows that CG(C1)
is defined over F . But it coincides with the central torus A of L whose dimension is 1.
Hence A is F -defined and F -isotropic being a torus of dimension 1.

Assume now that C1 is a group of type F4 and let us consider CG(C1). Since it
contains A, CG(C1) is a nontrivial reductive group over F whose rank is either 1, 2 or 3.

15



Let S ⊂ CG(C1) be a maximal torus over F . It commutes with C1, by construction, hence
C1 ⊂ [CG(S), CG(S)].

If dimS = 1, then S is F -isotropic. If dimS = 3, then C1 = [CG(S), CG(S)] would be
a standard subgroup of G of type F4. But a root system of type E7 does not contain a
subsystem of type F4.

Thus dimS = 2 and CG(S) is a reductive group whose semisimple part [CG(S), CG(S)]
has rank 5 and contains the subgroup C1 of type F4. It follows that [CG(S), CG(S)]
contains another simple component over F of rank 1. But any such a group is F -isotropic.

We are now ready to complete the proof of Theorem 5.1 in the case of E7 by reducing it
to E6. By Proposition 5.14, G is F -isotropic. Looking at Tits tables [T66] and taking into
consideration the fact that Γ is a pro-3- group we obtain that the only possibility for the
semisimple F -anisotropic kernel of G is to be a group of type E6. Applying Theorem 3.2
we get that ξ is equivalent to a cocycle with coefficients in an F -split standard subgroup
of G0 of type E6. So the result follows.

6 The triviality of the kernel of RG for E6, E7

Theorem 6.1 Let G0 be a quasi-split simple simply connectedgroup of type E6, E7 defined
over a field F of characteristic 6= 2, 3. Then KerRG0

= 1.

We split the proof into three parts considering inner forms of type E6, outer forms of
type E6 and type E7 separately. Let G0 be the given quasi-split group and let [ξ] be an
element of KerRG0

. Let G = ξG0 be the corresponding twisted group. The triviality of ξ
is clearly equivalent to saying that G is quasi-split over F .

6.1 Inner forms of type E6

Our strategy is to reduce to the case where G is an F -isotropic group and then to apply
Theorem 3.2 and Proposition 2.4.

6.1.1 Reduction to a pro-p-case

It is entirely based on the following theorem which is due to P. Gille [G93], [G97].

Theorem 6.2 Let G be a simple simply connected group of type E6 or E7 over F . Assume
that there exist finite field extensions E1, . . . , Es of F splitting G and such that the

g.c.d.{ [E1 : F ], . . . , [Es : F ] } = 1.

Then G splits over F .

Let Γp ⊂ Γ be a Sylow p-subgroup and let Fp = (F s)Γp be fixed points of Γp. Assuming
that Theorem 6.1 is proved over Fp we can find for each p a finite extension Ep/F contained
in Fp and splitting G. Since the g.c.d of all degrees [Ep : F ] is clearly 1, we obtain from
Gille’s theorem that G splits over F .
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6.1.2 Reduction to the case p = 2, 3

By Theorem 3.1, we may assume that ξ takes values in an F -defined maximal torus
T ⊂ G0.

Lemma 6.3 Any element of the group H1(F, T ) has order of the form 2n3m.

Proof. See Proposition 6.21 in [PR94], p. 375.

Lemma 6.3 implies that in the case p 6= 2, 3 any cocycle from Z1(F, T ) is trivial.

6.1.3 The case p = 3

Theorem 5.1 says that ξ is equivalent to a cocycle with coefficients in a standard simple
simply connected F -subgroup ofG0 of type A2. Then, by Theorem 2.1 and Proposition 2.4,
ξ is trivial.

6.1.4 The case p = 2

Assume first that G be F -isotropic. According to [T66], we have two possibilities for an
F -anisotropic kernel of G:

(i) an inner form of type A2 ×A2. But Γ is a pro-2-group, hence there are no anisotropic
inner forms of type A2 over F ;

(ii) an inner form of type D4. In this case, by Theorem 3.2, ξ is equivalent to a cocycle
with coefficients in a standard simple simply connected F -split subgroup of G0 of type
D4, hence it is trivial, by Propositions 2.2 and 2.4.

Let G be now F -anisotropic. Let E/F be a finite Galois extension which splits G and
is minimal with this property. Since Γ is a pro-2-group, there is a chain of subfields

F = E0 ⊂ E1 ⊂ . . . ⊂ Es = E

such that [Ei+1 : Ei] = 2 and s ≥ 1. Since G is not split over Es−1 and the F -isotropic case
has been already studied, G is anisotropic over that field. Thus it suffices to treat the case
where G splits over a quadratic extension K/F . Then G has a maximal torus T defined
over F and splitting over K (see § 4). Since G is a group of inner type, Gal (K/F ) has the
natural embedding into the Weyl group. We also know that the image of the nontrivial
element of Gal (K/F ) acts on the corresponding root system Σ(G,T ) by multiplication by
−1. But the Weyl group of type E6 does not contain −1: a contradiction.

6.2 Outer forms of type E6

Let G0 be a quasi-split group of type E6 and let K = F (
√
d) be the quadratic extension

over which G0 becomes split. Since the inner case has been already treated, we have
ResK([ξ]) = 1, hence G splits over K.

6.2.1 Isotropic case

Proposition 6.4 If G is F -isotropic, then [ξ] = 1.
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Proof. According to Tits’ classification [T66] the F -index of G is one of the following:

(a)
®­r r r
rrri iα2 α4 α3 α1

α6α5

(b)
®­r r r
rrr
¨
§
¥
¦iα2 α4 α3

α1

α6α5

(c)
®­r r r
rrriα2 α4 α3 α1

α6α5

(d)
®­r r r
rrr
¨
§
¥
¦

α2 α4 α3
α1

α6α5

Lemma 6.5 The Tits index of G is not of the form (a), (b) or (c).

Proof. Let T ⊂ G be a maximal F -torus containing a maximal F -split torus of G. We
fix a basis Π = {α1, . . . , α6} of Σ(G,T ) corresponding to the above pictures. According
to [T66] the maximal F -split subtorus of T is the identity component of the subgroup of
T defined by the following system of equations:

{
γ(t) = σ∗(γ)(t) for all γ ∈ Π and all σ ∈ Gal(F s/F ),
αi(t) = 1 for all non-distinguished vertices αi,

where t ∈ T and σ∗ denotes the ∗-action of Γ on Π (see [T66]). It follows from these
equations and the above pictures that in all cases (a), (b) and (c) the maximal F -split
subtorus of T contains the F -split one-dimensional subtorus S1 = 〈hβ(u) | u ∈ (F s)×〉
corresponding to the root β of maximal length. Then the semisimple part of the centralizer
CG(S1) is F -defined and coincides with the subgroup GΣ1

⊂ G generated by roots Σ1 =
{α1, α3, . . . , α6}. Let S2 ⊂ GΣ1

be an arbitrary maximal F -defined torus and let S =
S1 · S2.

Arguing as in Theorem 3.2 it is easy to see that there is an F -embedding S ↪→ G0 such
that [ξ] ∈ Im [H1(F, S) → H1(F,G0)] and the image of S2 lies in a standard quasi-split
simple simply connected F -subgroup H of type 2A5. Since S/S2 is an F -split torus, any
cocycle in Z1(F, S) is equivalent to a cocycle with coefficients in S2. Thus ξ is equivalent
to a cocycle with coefficients in H, hence ξ is trivial, by Propositions 2.3 and 2.4.

Lemma 6.6 A group with the Tits index (d) can not split over a quadratic extension. In
particular, the Tits index of G is not of the form (d).

Proof. Let H be an F -isotropic group with the Tits index of the form (d). If H splits over
a quadratic extension K/F , then so is its semisimple F -anisotropic kernel L. In case (d)
L is an almost simple simply connected F -anisotropic group of type 2D4. Since L splits
over a quadratic extension of the ground field, there are two possibilities.

Case I. L ' Spin (f), where f is an F -anisotropic quadratic form of dimension 8. Since
L has type 2D4, the discriminant of f is nontrivial. On the other hand, L is F -anisotropic
and splits over K, hence f is of the form

f ' a1(x
2
1 − dx22) + a2(x

3
1 − dx24) + a3(x

2
5 − dx26) + a4(x

2
7 − dx28),

where a1, . . . , a4 ∈ F×. It follows that f has trivial discriminant — a contradiction.
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Case II. L ' Spin (D, f), where D is a quaternion algebra over F and f is a skew-
hermitian form over D (with respect to the standard involution on D). Let E be the
function field of the Severi-Brauer variety corresponding to D. By a result of Parimala,
Sridharan and Suresh [PSS99], L is still anisotropic over E and clearly has type 2D4 over
E. Then we can proceed to Case I to get a contradiction.

Lemmas 6.5 and 6.6 complete the proof of Proposition 6.4.

6.2.2 Anisotropic case

By Theorem 3.1, there is a maximal F -anisotropic torus S ⊂ G0 splitting over K and such
that

[ξ] ∈ Im [H1(F, S)→ H1(F,G0)]. (6)

Then according to Proposition 4.14 for any maximal F -anisotropic torus of G0 splitting
over K, condition (6) still holds. We keep the notation introduced in Section 4. In
particular, given a Chevalley basis of the Lie algebra of G0 with respect to S we denote
the corresponding structure constants by {cα, α ∈ Σ = Σ(G0, S)}.

Lemma 6.7 There exists a maximal F -anisotropic torus S ⊂ G0 splitting over K and
such that the structure constants are of the form

cα1
≡ 1, cα2

≡ 1, . . . , cα6
≡ 1 (mod NK/F (K

×)).

Proof. Let T ⊂ G0 be a centralizer of a maximal F -split torus in G0. The Tits F -index of
G0 is of the form

®­r r rrrr
¨
§
¥
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¥
¦

α2
α4 α3 α1

α6α5

(7)

Here {α1, . . . , α6} is a basis of Σ(G0, T ). Let β ∈ Σ(G0, T ) be the root of maximal length
with respect to the basis {α1, . . . , α6}. It follows from (7) that the subgroup Gβ ⊂ G0
corresponding to β is an F -split group of rank 1, hence Gβ ' SL2. Let S1 ⊂ Gβ be a

maximal F -anisotropic torus of dimension 1 which is isomorphic to R
(1)
K/F (Gm,K).

The subgroup H = GΣ1
⊂ G0 corresponding to the set Σ1 = {α1, α3, . . . α6} is a

quasi-split F -group of type 2A5, hence it is F -isomorphic to SU (h), where

h = x1x
τ
1 − x2xτ2 + x3x

τ
3 − x4xτ4 + x5x

τ
5 − x6xτ6 . (8)

We choose the F -anisotropic torus S2 ⊂ H = SU(h) consisting of all diagonal isometries
of h and we let S = S1 · S2. Since Gβ commutes with H, S is a maximal F -anisotropic
torus in G0 splitting over K.

Let Σ be the root system of G0 with respect to S. We may now forget about T and we
work with the root system Σ related to S. In order to ease notation we denote a basis in Σ
by the same letters {α1, . . . , α6}. We choose a Chevalley basis (with respect to S) of the Lie
algebra of G0 and a basis {α1, . . . , α6} of Σ in such a way that its subset {α1, α3, . . . , α6}
is a basis of the root system of SU (h) with respect to S2. Then by Lemma 4.13,

cα1
≡ 1, cα3

≡ 1, . . . , cα6
≡ 1 (mod NK/F (K

×)).

19



We now want to modify S (if necessary) in such a way that cα2
≡ 1 (mod NK/F (K

×))
as well.

Assume that cα2
6≡ 1. Consider the cocycle ζ = (bτ ) ∈ Z1(K/F, S1(K)), where bτ =

hβ(cα2
) and β is the root of Σ of maximal length with respect to the ordering determined

by the basis {α1, . . . , α6}. Since Gβ ' SL2, ζ viewed as a cocycle with coefficients in Gβ

is trivial.
Let bτ = g−1+τ , where g ∈ Gβ(K). We claim that the torus S ′ = gSg−1 is as required.

Indeed, by Lemma 4.9, S ′ is defined over F and splits over K. Since g commutes with H,
Lemma 4.8 shows that the constants cα1

, cα3
, . . . , cα6

related to the tori S and S ′ coincide,
hence are as required. Since 〈β, α2〉 = 1, Lemma 4.8 again shows that the constant cα2

related to S ′ equals 1.

Applying the Moving Lemma 5.1.6 we want next to modify our cocycle ξ, i.e. take
an equivalent one, in such a way that the new one has coefficients in a simple simply
connected F -group of type D5.

To do so, let S be the torus constructed in Lemma 6.7. Let L ⊂ G0 be a subgroup
generated by the simple roots α2, . . . , α6 from the root system Σ(G0, S). Clearly, L is an
F -defined group of type D5 splitting over K. Since S splits over K, we have H1(F, S) =
H1(K/F, S(K)). Hence ξ can be written in the form ξ = (sτ ), where

sτ = hα1
(u1) · · ·hα6

(u6),

and τ is the nontrivial automorphism of K/F . It easily follows from sττ(sτ ) = 1 that
u1, . . . , u6 ∈ F×.

Since cα1
≡ 1, we have Gα1

' SL2 over F , by Lemma 4.12. Hence there is g ∈ Gα1
(K)

such that g−τ+1 = hα1
(u1). Consider the equivalent cocycle ξ̃ = (s̃τ ), where

s̃τ = gτhα1
(u1) · · ·hα6

(u6)g
−1 = g hα2

(u2) · · ·hα6
(u6) g

−1.

It has coefficients in L̃ = g L g−1.
The group L̃ is a simple simply connected group of type D5 defined over F . It contains

the maximal torus S̃2 = g S2 g
−1 splitting over K. In order to stress that L̃ sits inside G0,

we number simple roots in Σ(L̃, S̃2) as follows.

r r r r
r

α3 α4 α5 α6

α2

Lemma 6.8 The structure constants of L̃ with respect to the torus S̃2 are as follows:

cα2
≡ cα4

≡ cα5
≡ cα6

≡ 1 (mod NK/F (K
×)), cα3

≡ u1 (mod NK/F (K
×));

in particular, L̃ has F -rank at least 2.

Proof. The first statement follows from Lemma 4.8, the second one from the fact that the
subgroups Gα2

and Gα5
of L̃ corresponding to α2 and α5 split over F , by Lemma 4.12,

and commutes.

Since L̃ splits over the quadratic extension K/F , there are two possibilities for L̃.
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Lemma 6.9 Assume that L̃ ' Spin (f), where f is a quadratic form over F of dimension
10. Then L̃ is quasi-split.

Proof. We have to exclude the possibilities for the Witt index i of f to be i = 2, 3.

Assume that i = 2. Then f is the direct sum of two hyperbolic planes and a certain
F -anisotropic quadratic form of dimension 6. It follows that the dimension of a maximal
F -split torus in L̃ equals 2 and the semisimple part of its centralizer has type A3 = D3.

On the other hand, all maximal F -split tori in L̃ are conjugate over F . Since Gα2
and

Gα5
are split over F , they contain F -split tori of dimension 1, say T2 and T5. Then simple

calculations with roots show that the semisimple part of the centralizer C
L̃
(T2 · T5) has

type A1 ×A1 — a contradiction.

Assume that i = 3. Let fan be the anisotropic part of f . It has dimension 4 and splits
over K, in particular fan has trivial discriminant. It follows that the function field E of
the projective quadric fan = 0 splits f . Hence G0 has rank at least 5 over E which is
impossible, since E does not contain K.

Since L̃ is quasi-split and RG0
([ξ]) = R

L̃
([ξ̃]) = 1, Proposition 2.2 gives [ξ̃] = 1.

It remains to consider the case L̃ ' Spin (D, f), where D is a quaternion algebra over
F and f is a skew-hermitian form over D (with respect to the standard involution on D).
Let E be the function field of the Severi-Brauer variety of D. The extension E/F splits
D and so we can reduce to the previous case if we show that the twisted group G = ξG0
is still anisotropic over E.

Lemma 6.10 G is anisotropic over E.

Proof. Assume the contrary, i.e. G is E-isotropic. Then G is quasi-split over E, since
the isotropic case has been already treated. Let U be the unipotent radical of a Borel
subgroup B ⊂ G over E. The twisted group ξ̃(L̃) being F -anisotropic is still anisotropic

over E, by [PSS99]. Hence the intersection U ∩ ξ̃(L̃) is trivial. On the other hand, we

have dim ξ̃(L̃) = 45, dimU = 36, so dimU ∩ ξ̃(L̃) is at least 3.

6.2.3 A formula for the Rost invariant

We keep the notation from the previous subsection. Using the above material one can
easily produce a formula for the Rost invariant for any cocycle ξ ∈ Z1(K/F,G0(K)).
Namely, let S be the torus from Lemma 6.7. By Proposition 4.14, we have the surjection

H1(K/F, S(K))→ H1(K/F,G0(K)).

Hence we may assume that ξ has coefficients in S.
Let ξ = (aτ ) and let aτ = hα1

(t1) · · ·hα6
(t6), where t1, . . . , t6 ∈ F×. We write ξ as the

product ξ = ξ1 · ξ2, where

ξ1 = (hα1
(t1)hα4

(t4)hα6
(t6)), ξ2 = (hα3

(t3)hα2
(t2)hα5

(t5)).

Since, by Lemma 4.12, the subgroup of G0 generated by the roots α2, α3, α5 splits over
F , ξ2 is a trivial cocycle. Then, by the Moving Lemma 5.1.6, ξ is equivalent to a cocycle
with coefficients in an F -subgroup H ⊂ G0 of type A1 ×A1 ×A1.
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According to Lemma 4.8 the three components of H correspond to the quaternion
algebras D1 = (d, t3), D4 = (d, t2t3t5), D6 = (d, t5). Then, by Proposition 2.4 and from
the formula for the Rost invariant for groups of inner type An, we obtain that the cocycle
RG0

(ξ) is given by

RG0
(ξ) = (d) ∪ (t3) ∪ (t1) + (d) ∪ (t2t3t5) ∪ (t4) + (d) ∪ (t5) ∪ (t6).

6.3 Type E7

This case is entirely similar to case E6. By Gille’s Theorem 6.2 and Lemma 6.3, we may
assume that Gal (F s/F ) is a pro-p-group, where p = 2, 3. If p = 3, then in view of
Theorem 5.1 ξ is equivalent to a cocycle with coefficients in a subgroup of G0 of type A2.
Therefore ξ is trivial, by Theorem 2.1.

Let now p = 2. Then we may assume that G is split over a quadratic extension K/F .
It is easy to see that G, and hence G0, contains a maximal F -anisotropic torus S splitting
over K. By Theorem 3.1, there is an embedding S ↪→ G0 such that ξ is equivalent to
a cocycle with coefficients in the image of S. Arguing as in E6 we may assume that all
structure constants of S corresponding to all simple roots are 1 modulo norms NK/F (K

×).
After that we can modify ξ (as in Lemma 6.8) in such a way that the new cocycle lies in
a simple simply connected F -subgroup H of G0 of type E6 with the following structure
constants:

cα1
≡ cα2

≡ cα3
≡ cα4

≡ cα5
≡ 1 (mod NK/F (K

×)), cα6
≡ u1 (mod NK/F (K

×)).

It follows that F -rank of H is at least 3. Looking at the tables [T66], we see that H is
either quasi-split or split over F . Hence the result follows from Proposition 2.4, since H
is standard.

6.4 Type 3,6D4

This case is known (see [KMRT98]). However in order to get a self-contained proof of
Serre’s Conjecture II for groups of exceptional types over (C2)–fields (except E8) let us
show how this case follows from the above.

Let G0 be a simple simply connected quasi-split trialitarian group over F . Denote the
minimal extension of F over which G0 becomes split by L and let Γ = Gal (L/F ). If G0
is a group of type 3D4, then [L : F ] = 3 and Γ ' Z/3; otherwise we have [L : F ] = 6 and
Γ ' S3. We start with the following

Proposition 6.11 Let ξ ∈ Z1(F,G0) be a cocycle such that the twisted group G = ξG0
is quasi-split over a quadratic extension K/F . Assume that K and L are linearly disjoint
over F . Then ξ is equivalent to a cocycle with coefficients in a standard simple simply
connected F -subgroup of G0 of type A1.

Proof. Let σ ∈ Γ be an arbitrary element of order 3. We fix a subfield P ⊆ L of degree 3
over F . If [L : F ] = 3, the field P coincides with L. If [L : F ] = 6, let λ be the non-trivial
automorphism L/P . We have clearly λσλ−1 = σ2. Let τ be the nontrivial automorphism
of K/F . Since K and L are linearly disjoint over F , we can extend the automorphisms

σ, λ ∈ Gal (L/F ), τ ∈ Gal (K/F )

in a natural way to the extension E/F , where E = K ·L. For simplicity we denote these
extensions by the same letters σ, λ, τ .
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Let B ⊂ G be a Borel subgroup over K such that S = B ∩ τ(B) is a maximal torus. S
is split over E. Let Σ = Σ(G,S) and let Π = {α1, . . . , α4} ⊂ Σ be the basis corresponding
to the Borel subgroup B. The action of Γ on root subgroups was described in [ChT99]
and is given by the formulas

σ[x±α1
(u)] = x±α3

[σ(u)], σ[x±α3
(u)] = x±α4

[σ(u)],

σ[x±α4
(u)] = x±α1

[σ(u)], σ[x±α2
(u)] = x±α2

[σ(u)],

λ[x±α1
(u)] = x±α1

[λ(u)], λ[x±α2
(u)] = x±α2

[λ(u)],

λ[x±α3
(u)] = x±α4

[λ(u)], λ[x±α4
(u)] = x±α3

[λ(u)],

τ([xαi
(u)] = x−αi

(τ(u)).

(9)

Formulas (9) show that S ' S1 × S2, where

S1 = S ∩Gα2
= 〈hα2

(u) 〉 ' R
(1)
K/F (Gm,K),

S2 = S ∩G{α1,α3,α4} = 〈hα1
(u1)hα3

(u3)hα4
(u4) 〉 ' RP/F [R

(1)
P ·K/P (Gm,P ·K)].

The rest of the proof is the same as in Section 5.1.3. Namely, we construct the following
embedding ψ : S ↪→ G0. Let T ⊂ G0 be the centralizer of a maximal F -split torus of G0.
The Tits index of G0 over F is of the form:

¾
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ª
α2 α3

α1

α4

(10)

This picture shows that the subgroup H1 ⊂ G0 (respectively H2) generated by α2 (re-
spectively α1, α3, α4) from the root system Σ(G0, T ) is isomorphic to SL2,F (respectively
RP/F (SL2,P )). Hence there are natural embeddings S1 ↪→ H1, S2 ↪→ H2 which can be
extended to ψ : S ↪→ G0. Arguing as in Proposition 5.10 we obtain that ξ is equivalent to
a cocycle with coefficients in ψ(S). Then it can be written as a product of two cocycles
ξ = ξ1 · ξ2 with coefficients in ψ(S1) and ψ(S2) respectively. Since ξ2 has coefficients in
H2 which has trivial Galois cohomology, the Moving Lemma 5.1.6 completes the proof.

Theorem 6.12 If ξ ∈ Z1(F,G0) is a cocycle such that RG0
([ξ]) = 1, then ξ is trivial.

Proof. The triviality of ξ is equivalent to saying that the twisted group G = ξG0 is
quasi-split over F . As usual we distinguish two cases: isotropic and anisotropic.

Let first G be F -isotropic. We claim that then G is quasi-split over F . Assume the
contrary. Then the F -index of G is of the form

¶
µr r
r
ri (11)
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Let S1 be a maximal F -split torus in G. It follows from the picture that the semisimple
part of the centralizer CG(S1) coincides with the subgroup GΣ2

⊂ G generated by the non-
distinguished roots Σ2 = {α1, α3, α4}. Let S2 ⊂ GΣ2

be an arbitrary maximal F -defined
torus and let S = S1 · S2.

Arguing as in Theorem 3.2 we obtain that there is an F -embedding S ↪→ G0 such
that [ξ] ∈ Im [H1(F, S) → H1(F,G0)] and the image of S2 lies in a standard quasi-split
simple simply connected F -subgroup H ⊂ G0 of type A1 ×A1 ×A1. Since S/S2 is a split
torus over F , any cocycle in Z1(F, S) is equivalent to a cocycle with coefficients in S2. It
follows that ξ is equivalent to a cocycle with coefficients in H and H has trivial Galois
cohomology.

Let G be F -anisotropic. Consider first the case [L : F ] = 3. Since KerRL
G0

= 1, we
obtain that [ξ] ∈ H1(L/F,G0(L)). Then the argument on p. 372–373 in [PR94] shows
that ξ up to equivalence lies in a standard simple simply connected subgroup of G0 of
inner type A2. Hence ξ is trivial, by Theorem 2.1 and Proposition 2.4.

The last case is [L : F ] = 6. Let K1 = F (
√
d) be the quadratic extension contained in

L. Since we have already proved that KerRK1

G0
= 1, we obtain that ξ ∈ Z1(K1/F,G0(K1)),

in particular G is quasi-split over K1. Then we can easily find as above (see also [PR94],
p. 354) an F -subgroup H of G of type A1. Let K/F be a quadratic extension splitting
H and linearly disjoint with L. Then G is isotropic over K and hence quasi-split over
K, for the isotropic case has been already treated. Since L and K are linearly disjoint,
Proposition 6.11 and Theorem 2.1 show that ξ is trivial.

7 Serre’s Conjecture II and the Hasse principle Conjecture II

Conjecture II (Serre [S94]) Let F be a perfect field with cd (F ) ≤ 2 and let G be a
simply connected semisimple linear algebraic group over F . Then H1(F,G) = 1.

The Hasse Principle Conjecture II ( Colliot-Thélène, Scheiderer [CT96, Sch96]) Let
F be a field with vcd (F ) ≤ 2 and let G be a simply connected semisimple linear algebraic
group over F . Then the canonical map

θ : H1(F,G) −→
∏

ξ∈ΩF

H1(Fξ, G)

induced by the restriction maps has trivial kernel. Here ΩF denotes the set of all orderings
of F and Fξ is a real closure of F at the ordering ξ.

Theorem 7.1 Let G0 be a quasi-split simple simply connected group over a perfect field F
which is of type 3,6D4, E6, E7. Assume that cdp (F ) ≤ 2, where p = 2, 3. Then H1(F,G0) =
1.

Proof. Let ζ ∈ Z1(F,G0). Since cdp (F ) ≤ 2, p = 2, 3, we get RG0
([ζ]) = 1. It follows then

from Theorem 6.1 that [ζ] = 1.

Theorem 7.2 Let G0 be a quasi-split simple simply connected algebraic group over F
which is of type 3,6D4, E6, E7. Assume that vcd (F ) ≤ 2. Then

θ : H1(F,G0) −→
∏

ξ∈ΩF

H1(Fξ, G0)

has trivial kernel.
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Proof. Let ζ ∈ Z1(F,G0) be a locally trivial cocycle. Let K = F (
√
−1). By Theorem 7.1,

the restriction of ζ at K is trivial. It follows that RG0
([ζ]) has coefficients in Z/2. Hence

the result follows from Theorem 6.1 and the following theorem which is due to Arason.

Theorem 7.3 The Hasse principle holds for H3(F,Z/2).

Proof. Let η ∈ Z3(F,Z/2) be a locally trivial cocycle. Then by Arason’s theorem [A75],
Satz 3, there is an integer r such that η ∪ (−1)r = 0. On the other hand from the exact
sequence

H i(K,Z/2) cor−→ H i(F,Z/2)
∪(−1)−→ H i+1(F,Z/2) res−→ H i+1(K,Z/2)

( [Ar75], Corollary 4.6 ) and from the equalities

H i(K,Z/2) = H i+1(K,Z/2) = 0, i ≥ 3

we conclude that the product ∪(−1) is an isomorphism. Therefore, η = 0.

8 (C2)-fields

A field F has (C2)-property if every homogeneous equation f(x1, . . . , xn) = 0 of degree
d with coefficients in F has a nontrivial solution in F n if n > d2. Property (C2) implies
cd(F ) ≤ 2, but the converse is not true in general case. The main property of (C2)-fields
we are going to use is

Theorem 8.1 ([Art82]) Every central simple algebra A over a (C2)-field F of exponent p
has index p if p = 2, 3.

Theorem 8.2 Let G be a simple simply connected algebraic group of type 3,6D4, E6, E7
defined over a (C2)-field F . Then H

1(F,G) = 1.

Proof. Denote a simple simply connected ( resp. adjoint ) F -quasi-split group of the same
type as G by G0 ( resp. G0 ). In the case 3,6D4, as in 6.4, let L/F be the minimal Galois
extension over which G0 becomes split and P/F a cubic extension contained in L. We
have the natural map ϕ : H1(F,G0) −→ H2(F,Z), where Z is the center of G0. Let
ξ ∈ Z1(F,G0) be such that G = ξG0. Then there is the natural bijection (see [S94])

ϕ−1(ϕ([ξ])) −→ H1(F,G)/ ∼,

where ∼ is the equivalence relation given by multiplication on elements from H1(F,Z).
It follows that we need only to show that the fiber ϕ−1(ϕ([ξ])) consists of one element,
namely [ξ], and any cocycle with coefficients in the centre of G is trivial, viewed as a
cocycle in G.

8.1 Type 3,6D4

Let [ξ1] ∈ ϕ−1(ϕ([ξ])) and let G1 =
ξ1G0 be the corresponding twisted group. It is known

that
H2(F,Z) ' Ker [ 2BrP −→ 2BrF ].
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Since exponent of an algebra over P coincides with its index, ϕ([ξ]) can be represented by
a quaternion algebra over P . Then, by Proposition 43.9 in [KMRT98], there is a quadratic
extension K/F which kills ϕ([ξ]) = ϕ([ξ1]). This implies, by Theorem 7.1, that G and G1
are quasi-split over K. Arguing as in Proposition 6.11 (see also [PR94], p. 354) we can
easily see that each of G and G1 contains a simple simply connected subgroup of outer
type A2 splitting over K. Since cd2(F ) ≤ 2, any such subgroup is isotropic over F . Hence
both groups G and G1 are F -isotropic.

If one of G,G1 is quasi-split over F , there is nothing to prove. Otherwise, both of
them have the same Tits index (11). Denote by H0 the subgroup in G0 generated by the
root subgroups corresponding to the roots α1, α3, α4 from diagram (10). The group H0 is
a semisimple simply connected group of type A1 × A1 × A1 containing the center Z. Let
H0 ⊂ G0 be its image in the adjoint group. Taking into consideration the diagram (11)
and arguing as in Theorem 3.2 we get immediately that up to equivalence the cocycles ξ
and ξ1 lies in Z

1(F,H0). Hence [ξ] = [ξ1], since for groups of classical types Conjecture II
holds by [BP95].

To show that
Im [H1(F,Z) −→ H1(F,G) ] = 1

it suffices to note that the center Z lies in the semisimple F -anisotropic kernel of G which
has type A1 ×A1 ×A1 (see diagram (11)) and hence has trivial Galois cohomology.

The above argument shows that we can apply the same proof for the other types E6, E7
if we find an F -split torus S ⊂ G0 satisfying the following conditions:

(a) [ξ], [ξ1] ∈ Im [H1(F,CG0
(S)) −→ H1(F,G0) ], where S is the image of S in G0,

(b) H0 = [CG0
(S), CG0

(S) ] is a semisimple simply connected group of classical type con-
taining the center Z of G0,

(c) the centralizer CG0
(S) is an almost direct product of S and H0.

8.2 Type 1E6

We have Z ' µ3, hence there is a cubic cyclic extension E/F killing ϕ([ξ]) = ϕ([ξ1]).

Lemma 8.3 G and G1 are F -isotropic.

Proof. Assume the contrary. Let C1 be a subgroup constructed in Lemma 5.3. It has type
D4, hence is F -isotropic by the argument above — a contradiction.

All admissible F -isotropic Tits indices are given by diagrams (5). Since G,G1 are split
over a cubic extension E/F we conclude that the only case which can occur is represented
by diagram (5), index (ii). Then one can easily see that the torus S1 constructed in
Theorem 3.2 satisfies properties (a), (b) and (c).

8.3 Type 2E6

Let K/F be the quadratic extension over which G0 becomes a group of inner type and let
τ be the nontrivial automorphism K/F .

Lemma 8.4 G and G1 are F -isotropic.
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Proof. Assume the contrary. We have already proved that G is K-isotropic. If it splits
over K, then it contains an F -defined subgroup of type A2 splitting over the quadratic
extension K/F . Since F has (C2)-property, this subgroup is F -isotropic.

Thus G is not K-split, hence its K-Tits index is of the form (ii) in diagram (5) (note
that the index (i) can not occur since its anisotropic kernel is a classical group of type
D4 and any such group is F -isotropic over a (C2)-field). Let P be a minimal parabolic
subgroup ofG overK in generic position and let C be the connected component of P∩τ(P ).
Since, by our assumption, G is F -anisotropic, C is a reductive F -group. By dimension
argument, CK is a Levi subgroup of P . This implies that [C,C] is a semisimple K-
anisotropic kernel of G. It follows then from picture (ii) in diagram (5) that the centraliser
CG([C,C]) is an F -defined subgroup of G of type A2 splitting over K. But any such group
is F -isotropic.

All admissible F -isotropic Tits indices of type 2E6 are given by the diagrams in Propo-
sition 6.4. Since the K-Tits indices of G,G1 are of the form (ii) in (5), we conclude that
over F they are of the form either (a) or (c) from the diagrams in Proposition 6.4. In both
cases the subgroups in G,G1 corresponding to the root of maximal length are isomorphic
to SL2 over F , hence contains a 1-dimensional split torus S. The rest of the proof is the
same as for inner forms of type E6.

8.4 Type E7

As above one can easily see that both G,G1 are F -isotropic. Looking at the Tits ta-
bles [T66] and taking into the consideration the fact (which has been already proved
above) that all simple groups of type not An are F -isotropic we obtain that G,G1 have
the same Tits indices of the form

r r r r r r
r

i i i i
The rest of the proof is the same as for inner forms of type E6. Thus we complete the
proof of Theorem 8.2.

Remark 8.5 Note that under the proof of Theorem 8.2 we have showed that any simple
group of type 3,6D4, E6, E7 is isotropic and also described all admissible Tits indices of
such groups.
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